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Abstract

The pulsatile flow of blood through a catheterized artery is analyzed, assuming the blood as a two-fluid model with
the suspension of all the erythrocytes in the core region as a Herschel-Bulkley fluid and the peripheral region of plasma
as a Newtonian fluid. The resulting system of the nonlinear implicit system of partial differential equations is solved by
perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance
are obtained. The variations of these flow quantities with yield stress, catheter radius ratio, amplitude, pulsatile Rey-
nolds number ratio and peripheral layer thickness are discussed. The velocity and flow rate are observed to decrease,
and the wall shear stress and resistance to flow increase when the yield stress increases. The plug flow velocity and
flow rate decrease, and the longitudinal impedance increases when the catheter radius ratio increases. The velocity and
flow rate increase while the wall shear stress and longitudinal impedance decrease with the increase of the peripheral
layer thickness. The estimates of the increase in the longitudinal impedance are significantly lower for the present two-

fluid model than those of the single-fluid model.
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1. Introduction

Catheters are used extensively in modern medicine.
Typically, a catheter consists of a long flexible cylin-
drical tube at the tip of which various functional tools
(pressure transducers, flow meters, inflatable balloons,
etc.) are positioned. The purpose of catheters is to
accurately measure the arterial pressure or pressure
gradient, or to clear short occlusions from the walls of
the stenosed artery [1]. The method of catheterization
is to insert the catheter-tool device into a peripheral
artery and then position the device in the desired part
of the arterial network by passing an appropriate
length of the catheter through the artery [2]. The in-
sertion of a catheter into an artery leads to the forma-
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tion of an annular region between the catheter wall
and the arterial wall. The insertion of a catheter into
an artery alters the flow field, modifies the pressure
distribution and hence increases the resistance to flow
[3]. Thus, the pressure or pressure gradient recorded
by a transducer attached to the catheter will differ
from that of an uncatheterized artery and hence, it is
essential to know the catheter-induced error [4].

Back [5] and Back et al. [6] have studied the im-
portant hemodynamic characteristics like the wall
shear stress, pressure drop and frictional resistance in
catheterized coronary arteries under the normal and
pathological situation of a stenosis present. The effect
of catheterization on various flow quantities in a
curved artery is studied by Karahalios [7] and
Jayaraman and Tiwari [8]. Daripa and Dash [1] have
performed a numerical study of pulsatile blood flow
in an eccentric catheterized artery using a fast algo-
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rithm. Apart from the above investigations, some
more attempts [9-11] have been made to study the
blood flow through catheterized arteries, treating
blood as a Newtonian fluid. But, blood being a sus-
pension of erythrocytes exhibits remarkable non-
Newtonian behavior when it flows through narrow
blood vessels at low shear rates [12, 13]. Since the
blood flow through narrow arteries is highly pulsatile,
many researchers [4, 14] have dealt with the pulsatile
flow of blood flow through catheterized arteries by
treating blood as a non-Newtonian fluid.

Bugliarello and Sevilla [15] and Cokelet [16] have
shown through experiments that for blood flowing
through narrow blood vessels, there is a peripheral
layer of plasma which is a Newtonian fluid and a core
region of suspension of all the erythrocytes which is
non-Newtonian. Further, they have reported that it is
impossible to represent the velocity distribution of
blood flow through narrow arteries by a single-fluid
model. For a realistic description of blood flow, it is
appropriate to assume the blood as a two-fluid model
with the suspension of all the erythrocytes in the core
region as a non-Newtonian fluid and the plasma in the
peripheral layer as a Newtonian fluid [17, 18]. Sankar
and Lee [19] have reported that the two—fluid
Herschel-Bulkley (H-B) model is more suitable to
represent the blood when it flows through narrow
blood vessels.

Sankar and Hemalatha [3] have analyzed the pulsa-
tile flow of a single-fluid model for blood flow
through catheterized artery, assuming blood as an H-
B fluid. Sankar and Lee [20] have analyzed the steady
flow of a two-fluid H-B model and estimated the
increase in the resistance to flow due to catheteriza-
tion. The pulsatile flow of the two-fluid model of
blood through catheterized artery has not been studied
so far by any one. Hence, in this model, we study the
pulsatile flow of a two-fluid model for blood through
catheterized narrow arteries (of diameters 0.02mm —
0.2mm) at low shear rates (7 <10/sec), assuming
the suspension of all the erythrocytes in the core re-
gion of the blood vessel as an H-B fluid and the
plasma in the peripheral layer as a Newtonian fluid.
The layout of the paper is as follows.

Section 2 formulates the model mathematically,
while section 3 nondimensionalizes the basic govern-
ing equations and the boundary conditions. The re-
sulting implicit system of nonlinear equations is
solved by perturbation method in section 4. The ef-
fects of pulsatility, catheterization, non-Newtonian
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Fig. 1. Flow geometry of the catheterized artery.

nature of blood and peripheral layer thickness on
various flow quantities are analyzed with some possi-
ble applications in section 5. The results are summa-
rized, and some scope and possible extension of the
present study are mentioned in the concluding section
6.

2. Formulation of basic equations

Consider an axially symmetric, pulsatile, laminar,
and fully developed flow of blood in an artery of ra-
dius R in which a catheter of radius R (k<1) is
introduced coaxially and blood is modeled as a two-
fluid model with the suspension of all the erythro-
cytes in the core region as an H-B fluid and the
plasma in the peripheral region as a Newtonian fluid.
It is assumed that the pulsatile flow in the artery is
due to a prescribed periodic pressure gradient along
the axis of the artery. The length of the artery is as-
sumed to be large enough when compared to its di-
ameter so that entrance, end and special wall effects
can be neglected. The cylindrical polar coordinate
system(?,(/; ,E) is used to study the flow, where 7
and z denote the radial and axial coordinates and
¢ is the azimuthal angle. The geometry of the cathe-
terized artery is shown in Fig. 1. It can be shown that
the radial velocity is negligibly small in magnitude
and may be neglected for low Reynolds number flow.
The basic momentum equations in this case simplify
to

_ du, op 19 ,__ e o m - =
Hiau;:—ailzj_;a?(}’rh,) lf k SVSRI (1)
_ du, o 10 ,__ = _ =
N autlv :_af—;a?(rfw) if ISVSR (2)

where p denotes the pressure; o, and p, denote
the density of the H-B fluid and Newtonian fluid,
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respectively; 7, and 7,, denote the shear stress of the
H-B fluid and Newtonian fluid, respectively;
u, and u,, denote the fluid’s velocity in the core
region and peripheral region, respectively; ¢ denotes
the time and R, is the radius of the core region of
the artery. We have assumed the Egs. (3)-(5) of
Sankar and Lee [20] as the constitutive equations of
the fluids in motion in the core region (H-B fluid) and
in the peripheral region (Newtonian fluid), and these
equations are simplified to

#Ha”ﬁ—ﬂ”(l ’”J ir %,
or 7| 3)
7,<0 and kR<7 < AR
iy =0 if 4R <7< AR @
_ duy, — nt, i,

=-T -—4 | if =<0,
T or i [ rﬁ] or ()
7,>0 and LR<F <R,
_ om, ., .. o,

N=—|7,| if N <0,

o i L ©6)

7,>0and R <7<R

where u,, u, are the viscosities of the H-B fluid
and Newtonian fluid; 7, is the yield stress; A, and A,
are the yield planes bounding the plug flow region.
The details of the obtained Egs. (3)-(6) are given in
Sankar and Lee [20]. For the appropriate boundary
conditions of the fluid flow, one can refer to Egs. (11)
and (12) of Sankar and Lee [20].

3. Nondimensionalization

Let p, be the absolute magnitude of the typical
pressure gradient. In addition Let us introduce the
following nondimensional variables:

Uy =ﬁH/(ﬁ0§2/2ﬁ0),
Uy =ﬁN/(ﬁ0§2/2ﬁN>’ r=7/R,R =R /R,
z=%/R, 7, =7,/(B,R/2). 7,=7,/(P.R/2).

™)

where 1, =, (2/ 3 )ni1 is the typical viscosity
coefficient having the dimension as that of the New-

tonian fluid’s viscosity, ¢, and ¢, are the pulsatile
Reynolds numbers of the H-B fluid and Newtonian
fluid, respectively, and 6 is the nondimensional yield
stress. The pressure gradient can be written as

P()=-p P(1) ®

where P (t) is the nondimensional pressure gradient
along the axis, which is taken as a periodic function
of time for pulsatile flow. Since the flow is pulsatile,
the pressure gradient is taken as P () = I+ A sin t,
where A is the amplitude parameter. Using Egs. (7)
and (8), the momentum Egs. (1) and (2) are simplified,
respectively, to

g,,aaifzzp(;)-lai(m,) ifk<r<R ()
r or

Ju, 10 .
ENT;IZQP(I)—;g(rTN) if 1?1 <r<l (10)

Similarly, using Egs. (7) and (8), the constitutive
Eqgs. (3)-(6) are simplified respectively to

aMH :THn(l_ngJ lf au7H>O’

or |z,| or 1n

7,<0 and k<r<A4

ag;ﬁzo if |7,/<0 and 4 <rs<i, (12)
-

G Pl P RPN

or |74 or (13)

7,>0 and 4, <r<R

aLV:_‘TN if au—N<0, 7,>0 and R <r<1(14)
or or

One can refer to Egs. (21) and (22) of Sankar and
Lee [20] as the boundary conditions in the nondimen-
sional form.

4. Perturbation method

As it is not possible to find an analytic solution of
the nonlinear coupled implicit system of partial dif-
ferential Egs. (9)-(14), a perturbed method is used to
solve the system of partial differential equations.
When we nondimensionalize Egs. (1) and (2), the
pulsatile Reynolds numbers «,, and 7, occur natu-
rally and hence it is appropriate to expand the un-
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. )
knowns 7,,7,,u, andu, in powers of &, =,
and ¢, = a;. . The shear stress u, of H-B fluid in
the core region can be expanded in perturbation series
as

uy (r,0) =ugy (r,0) + €y (7,0) + e, (15)

Similarly one can expand 7,,u, and 7, in the
perturbation series as above. Substituting the pertur-
bation expansions of u, and 7, in the momentum
Eq. (9) and then equating the constant terms and &,
terms (Since ¢, <<1, we have neglected the terms
containing &7, and higher powers of &, ) , one can
obtain

10
0=2P(1)—=(r7,,) (16)
ror
Oy, 19
-2 1
ot rar(ﬂlH) (a7

Hereafter, for convenience, we have used ‘P’ in-
stead of ‘P (¢)’". Using the perturbation series expan-
sions of u, and 7, in Eq. (10) and then equating
the constant terms and &, terms, we get

0:2P—;g(}"z—01\/) (18)
Ouyy 10

N __~9 : 19
ot rar(ﬂm) (19

Using the perturbation series expansion of u,, and
7, in Egs. (11)-(13) and then equating the constant
terms and ¢&,, terms, we obtain
when k<r<Ai

) - .. 0
%z\fw (70|~ 1) if %>0 and 7,,, <0
(20)
a n—.
%zn‘fw‘ 2‘TIH‘(‘TOH‘_(”_1)0)
S 21
if 24250 and 7,, <0
or
when A <r<A4,
P _ it |z,,]<6 (22)
or
Iy _ it |z,]<0 23)
or

when 4, <r<R

ou n- o Ou
aiH =% 1(‘2'0[_1‘—}’16) if %<0 and 7,,, >0
24
0 n-
B =l - (1-1)0)
r (25)

it %0 and 7,0
or

Using the perturbation series expansion of u, and
7, in Eq. (14) and then equating the constant terms
and ¢, terms, one can get

Oy . Oy

0N = f —2<0

or For 1 or ’ (26)

T,y >0 and R <r<1

duyy _ -, if Oy 0, 7,y >0 and R <r<1(27)
or or

Using the perturbation series expansion of u,, ,
7, , uy and 7,, Egs. (21) and (22) (the boundary
conditions in the non-dimensional form) of Sankar
and Lee [20] become

Uyy =, =0 at =k and u,, =u,, =0at »=1(28)

Uyy =Ugys Uy =Upys (29)

Ty =T and 7,, =7, r=R

Note that the initial components z,,,, 7y, #,, and
u,, of the flow quantities z,,7,,u, and u, are
the same as the flow quantities z,,,7,,u,, and u, of
the steady flow. Thus, solving Egs. (20), (22), (24)
and (26), the expressions for 7,,, 7,,,u,, and u,,
are obtained as

=) (30)
(€1))

Upy =

[1-r7+247logr | (35)

where
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i =, (36)
A=A =(0/P)=p (37

where £ is the width of the plug core region. Note
that ug, , u, and u,; denote the initial approxi-
mation to the fluid’s velocity in the regions
k<r<A, A<r<Aand A4, <r<R, respectively.
The details of obtaining Eq. (30)-(37) are given in
Sankar and Lee [20], as these are the corresponding
flow quantities of the steady flow. By the continuity
of the velocity distribution throughout the flow field,
we have the condition

”gH(”:ﬂ'l):qu:”gl;(r:/lz) (38)

This gives
P{J[ﬁ—jd_I[—ﬁjd
A g

—%[1—&2 +22710g(R)]=0 (39)

Using Egs. (36) and (37) in Eq. (39), one can get

» {”j(%(& +rﬂ)—r2J"d -] [Fz—%(r%+ﬁ)]ndr

k A+p

nﬁ{f[ Mﬂ }
jeen

—g[l R’ +227log(R)]=0 (40)

The above equation is solved numerically for A,
using Regula—Falsi method, the integrals are evalu-
ated numerically using quadrature formula. Once A,
is known, A4,is determined using Eq. (38). Integra-
tion of Eq. (21) yields the correction to shear
stress 7, of the H-B fluid due to small inertial effects
as

A
T =%IL”°H rar+ 20 @1)

t r

where D(t)= Az, (A,t) is an unknown function of
time which is to be determined. The details of deriva-
tion of 7, are given in Appendix 1. The corrected
shear stress distribution of 7, is7,, +&,7,, . Due to
this corrected shear stress, the yield planes A and A,

will be shifted. Let the corrected yield plane locations
be A +e,A° and A +¢,A°. Eq. (43) can be re-
written as

_(701-1 + gHTIH) =0="Ty,; +&4Ty

r=hy+ey A5 “42)

r=d+eyAf

Using Taylor series expansion and making use of
Eq. (43), one can obtain

A€ = (_;2:(’11’” (43)
o (At)

A€ = ;Z;z:{(’lzt) (44)
o (4,1

Integrating of Eq. (30) between R; and » and using
the boundary condition 7,,(R,,t)=7,(R,t), one
can obtain the correction to shear stress 7, of the
Newtonian fluid due to small inertial effects as

1% Rt
TIN:—;J.auOH}”dV"' it

N (th)
ot r 43)

B

The details of obtaining the final expression for
7,, are given in Appendix 2. The details of obtaining
the expressions for correction to velocity distribution
u, and u,, in the regions k<r<A4, A <r<i,,
A, <r<R and R <r<1 are given in Appendix 3.
The expression for D(r) is also obtained in Appen-
dix 3. The nondimensional flow rate is given by

1
Q=8J.urdr
3
Ay

=8 Iu,jrdr+Tu rdr+Ju rdr+ju\,rdr

k

(46)

The expression for the flow rate Q is obtained in
Appendix 4. The wall shear stress in the artery is ob-
tained from Eqgs. (31) and (A2.6) and is given by

7, =Ty

%, tenT, (47

=Tonl,y

r=1
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where
=P(1-4°) (48)
and
7, =- 1‘6’5[2(1_R5)_(1_R;‘)
+ 2[R log R, —2(1—R12)H
APdA

707[21321 ogR, +1-R ]

- dP BB xz_ﬂz "
-nP o I :[ . dx ydy

S (PR CSE
sanapr 92 “j[“ ]%ydy
o0 J[51) e
+(”;”*J{if[”txzj”<&>
e |

—(Rf ;ﬂ; ](1—1%5 +247log R, +4PAlogR )+ D(t) (49)

The longitudinal impedance of the artery is given
by

A=P/Q (50)

when R; = 1.0, the present model reduces to the sin-
gle-fluid H-B model for blood flow through catheter-
ized arteries and is such a case, the expressions for
shear stress, velocity, flow rate, wall shear stress and
longitudinal resistance are in good agreement with
those of Sankar and Hemalatha [20].

5. Numerical computation and discussion of
results

The objective of the present study is to analyze the
effects of the pulsatility, catheter, non—Newtonian
nature of blood and peripheral layer thickness in a
narrow artery, when a catheter is inserted into an ar-

tery coaxially. Blood has been modeled as a two-fluid
model with the suspension of all the erythrocytes in
the core region as an H-B fluid and the plasma in the
peripheral layer as a Newtonian fluid. The single and
multiple integrals appearing in the expressions of the
flow quantities are evaluated numerically by using the
quadrature formula. Similarly, the derivative dA/dt
occurring in the flow quantities is computed by nu-
merical differentiation. Though the yield stress of
blood at a haematocrit of 40 is 7, = 0.04dyne/cm*

[21], the range 8=0 to 0.1 is more suitable when a
catheter is inserted into the blood vessels [4]. Just to
pronounce the variations in the flow quantities (Ve-
locity, flow rate, wall shear stress etc), we have taken
the range of yield stress € as 0 to 0.25 in this study.
It is generally observed that the typical values of the
power law index » for blood flow models are taken to
lie between 0.9 and 1.1, and we have used the typical
values of n to be 0.95 when n < 1 and 1.05 when n >
1[14].

Since the flow is pulsatile and any periodic func-
tion can be represented by a Fourier series, it is ap-
propriate  to choose the pressure gradient as
P(t)=1+ Asint , where A is the amplitude parameter
and is taken as less than 1. In the present study, we
use the range 0.2-0.7 for the amplitude parameter A to
discuss its influence [14]. The range of the catheter
radius ratio & (ratio between the radius of the catheter
and the radius of the artery) is taken as 0.1-0.7 to
accommodate all the types of catheters. The fluid
motion would be almost stopped if the range is in-
creased further. When k—0, the present study reduces
to the two-fluid blood flow model through a uniform
tube. The values of the position of the interface R;
between the core region and peripheral layer are taken
as 0.95 and 0.985 [18, 19].

The ratio & (= ay/ay) between the pulsatile Rey-
nolds numbers of the Newtonian fluid and H-B fluid
is called the pulsatile Reynolds number ratio. Though
the pulsatile Reynolds number ratio & ranges from 0
to 1, it is appropriate to assume its value as 0.5 [19].
Although the pulsatile Reynolds number oy of the H-
B fluid also ranges from 0 to 1 [14], the values 0.5
and 0.25 are used to analyze its effect on the flow
quantities. Given the values of «and o, the value of
o can be obtained from o= o/ oty.

5.1 Yield plane locations

Since blood has a finite yield stress [13], it exhibits
plug flow (solid-like flow) in regions where the shear
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Fig. 2. Variation of yield plane locations in a time cycle for
different values of R;, 4 and 6 with n=0.95 and k= 0.5.
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Fig. 3. Variation of wall shear stress in a time cycle for dif-
ferent values of R;, 4 and 6 with k= o= 0.5 and n = 0.95.

stress is less than the yield stress. The location of a
point where the shear stress is equal to the yield stress
is called a yield point and the locus of such points is
called yield plane. For plain tube flow, there is only
one yield plane, whereas in the case of annular tube
flow, there exist two yield planes » = A, and r = A,
which bound the plug flow region, and the difference
Ai- Ay =P is the width of the plug flow region. Since
pulsatile flow is assumed, the yield planes A, A, and
the width of the plug flow region  change with re-
spect to time.

The variation of yield plane locations in a time cy-
cle for different values of the interface position R;,
amplitude 4 and yield stress O with n = 0.95 and k =
0.5 is depicted in Fig. 2. It is noted that the width of
the plug flow region decreases as time t increases
from 0° to 90°, then increases as t increases from 90°
to 270° and then again it decreases as t increases fur-
ther from 270° to 360°. The width of the plug flow
region is minimum at 90° and maximum at 270°. For
a given set of values of the parameters R; and 4, the
width of the plug flow region increases considerably
with increasing values of the yield stress 0. For the

o
w

n=0.95k=0.204=0.1

o

N

a1
L

n=0.95k=0204=05

o
N
L

g
o
L

Plug flow velocity u,
o
o

0.05

n=1.05k=0.3,0y=05

0 T
0 30 60 90 120 150 180 210 240 270 300 330 360

Time t°

Fig. 4. Variation of plug flow velocity in a time cycle for
different values of n, k and o with © =0.1, 4 =0.5 and R, =
0.95.

fixed values of R; and 6 and increasing values of the
amplitude 4, the width of the plug flow region de-
creases marginally when time ¢ lies between 0° and
180° and increases significantly when ¢ lies between
180° and 360°. But due to the variation of the inter-
face position, there is no considerable change in the
width of the plug flow region. From Fig. 2, the plot of
the single-fluid H-B model is in good agreement with
Fig. 2 of Sankar and Hemalatha [3]. Fig. 2 shows the
effects of non-Newtonian nature of blood and the
amplitude of the pulsatile flow of two-fluid model for
blood through a catheterized artery.

5.2 Wall shear stress

Fig. 3 shows the variation of the wall shear stress
for different values of the yield stress 0, amplitude A
and the interface position R; with k=oy=0.5 and n =
0.95. 1t is noticed that the wall shear stress increases
as time t increases from 0° to 90°, then decreases as t
increases from 90° to 270°, and then again increases
as t increases further from 270° to 360°. The wall
shear stress is maximum at 90° and minimum at 270°.
For the fixed values of the parameters 4 and R, the
wall shear stress increases slightly as the yield stress 0
increases, whereas the reverse behavior is observed
when the thickness of the peripheral layer increases
(R, decreases) while all the other parameters are held
constant. For a given set of values of R; and 6 and
increasing values of the amplitude A4, the wall shear
stress increases significantly when time t lies between
0° and 180° and decreases considerably when t lies
between 180° and 360°. The wall shear stress of the
two-fluid H-B model is marginally lower than that of
the single-fluid H-B model. It is worth mentioning
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that the plot of the single-fluid H-B model in Fig. 3 is
in good agreement with Fig. 9 of Sankar and He-
malatha [3]. Fig. 3 depicts the effects of peripheral
layer thickness and non-Newtonian nature of blood
on wall shear stress in the two-fluid blood flow model.

5.3 Plug flow velocity

The variation of plug flow velocity in a time cycle
for different values of the power law index n, catheter
radius ratio k and pulsatile Reynolds number oy; of
the H-B fluid with 8 = 0.1, 4 = 0.5 and R, = 0.95 is
sketched in Fig. 4. The plug flow velocity increases as
time t increases from 0° to 90°, then decreases as t
increases from 90° to 270°, and then again increases
from 270° to 360°. The plug flow velocity is maxi-
mum at 90° and minimum at 270°. For a given set of
values of the pulsatile Reynolds number oy and
power law index n and the increasing values of cathe-
ter radius ratio k, the plug flow velocity decreases
very significantly. Also, for a given set of values of
the pulsatile Reynolds number oy and the catheter
radius ratio k and the increasing values of power law
index n, the plug flow velocity decreases very slightly
when the time parameter ¢ lies between 0° and 90°
and, 270° and 360° and, it decreases marginally when
the time ¢ lies between 90° and 270°. For a given set
of values of k and n and increasing values of o, the
plug flow velocity increases when time t lies between
0° and 90° and also between 270° and 360°, and it
decreases when t lies between 90° and 270°. But the
variation in the plug flow velocity due to the increase
in the pulsatile Reynolds number o; of the H-B fluid
is marginal. Fig. 4 shows the effects of catheterization,
pulsatility and non-Newtonian nature of the fluid on
the plug flow velocity in the two-fluid model of blood
flow.

5.4 Velocity distribution

Velocity distributions give a detailed description of
the flow field. The velocity distributions during a time
cycle with 4 = 0.2, oo = 0; = 0.5, ay = 0.25, k= 0.3,
R;=0.985 and 6 = 0.1 for n = 0.95 and n = 1.05 are
shown in Figs.5(a) and 5(b). One can notice the plug
flow, around the middle of the velocity profile. The
velocity increases from 0° to 90°, then decreases as t
increases further from 90° to 270° and then again
increases from 270° to 360°. The velocity is maxi-
mum at 90° and minimum at 270°. At different in-
stants of time t, the variations in the velocity profiles
are highly significant around the plug flow region and

1

t=135" —ant
09 t=390
=08
a
= t=270°
S07T1 t=gs
-5 -~
Sk t=225"
gEJ.5-
& t=0° 180°
04 1
t= t=45"
0.3 r r r r r r
0 002 004 006 008 041 012 044
Velocity u
(@) n=0.95
1
09 - t=45° t=90°
— = 7P
08 - t=270
=
£071 t=315"
606
= | t= 225"
EOS- -
e =00, 380°
04 - -
= 180° t = 135
03 T T T T T T
0 002 004 006 008 01 012 014
Velocity u
(b)n =105

Fig. 5. Velocity distribution during a time cycle with 4 = 0.2,
a=o0y=0.5 0y=0.25£k=03,R,=0.985and 6 =0.1.

these variations decrease rapidly in the radial direc-
tion and all the velocity profiles coincide at the walls
of the blood vessel and the catheter. Furthermore, the
velocity is marginally higher for n = 0.95 than that of
n = 1.05. The velocity distribution for different values
of 4, R, and 8 with n =0.95, oo = oy; = 0.5, oy = 0.25
and k = 0.5 is plotted in Fig. 6. For a given set of val-
ues of 4 and O, the velocity increases considerably
with the increase of the peripheral layer thickness (as
R, decreases). The velocity increases significantly
with the increase of the amplitude, whereas the be-
havior is reversed when the yield stress increases
while the rest of the parameters kept fixed. One can
notice that the plot of the single-fluid H-B model in
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Fig. 6. Velocity distribution for different values of 4, 6 and
R, withn=0.95 o0=0y=0.5, 0ny=0.25and k=0.5.
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Fig. 7. Variation of flow rate in a time cycle for different
values of R;, A and 0 with oy = 0.25, k=0 = oy = 0.5, and n
=0.95.

Fig. 6 is in good agreement with Fig. 5 of Sankar and
Hemalatha [3]. Fig. 6 depicts the simultaneous effects
of amplitude, peripheral layer thickness and non-
Newtonian nature of the blood on the velocity distri-
bution in the two-fluid blood flow model.

5.5 Flow rate

Fig. 7 shows the variation of the flow rate in a time
cycle for different values of R;, 4 and 6 with k= o =
oy = 0.5, oy = 0.25 and n = 0.95. The flow rate in-
creases as time t increases from 0° to 90°, then de-
creases as increases from 90° to 270°, and then again
increases as t increases further from 270° to 360°. The
increase in the flow rate is highly significant when the
peripheral layer thickness R, increases and the flow
rate increases considerably with the increase of the
yield stress 0 while all the other parameters are kept
as invariable. For a given set of values of the parame-
ters R; and O and increasing values of the amplitude,
the flow rate increases when the time t lies between
0° and 180° and decreases when t lies between 180°

0.9
0.8
0.7
0.6 q
0.5
0.4
0.3
0.2
0.1

0 — T — T
0 30 60 90 120 150 180 210 240 270 300 330 360

n=0.95k=0.3

n=0.95k=0.5
n=0.95k=0.7

Flow rate Q

n=1.05k=05

Time t°

Fig. 8. Variation of flow rate in a time cycle for different
values of n and k with R; =095, A =a =0y =0.5,and 6 =
0.1.

R;=0.985,6=0.1

R,=0.95,0 = 0.2

a A a a
[e ] o N e (2]
L L L L

6 R;=0.95,0=0.15

R, =0.95,0 = 0.1

Longitudinal impedance A

0 T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Catheter radius ratio k

Fig. 9. Variation of longitudinal impedance with catheter
radius ratio for different values of R; and 0 with 4 = ot = oy =
0.5,n=0.95 and t = 45°.

and 360°. It is of interest to note that the plot of the
single-fluid H-B model is in good agreement with Fig.
7 of Sankar and Hemalatha [3]. Also, it is important
to note that the flow rate of the two-fluid H-B model
is considerably high compared with that of the single-
fluid H-B model. The variation of flow rate in a time
cycle for different values of the catheter radius ratio k
and the power law index n with R; =0.95, 4 = o= ay
= 0.5, oy = 0.25 and 6 = 0.1 is plotted in Fig. 8.
Clearly, the flow rate decreases significantly with the
increase of the catheter radius ratio k£ when the power
law index n is fixed. The same behavior is noticed
when the power law index » increases, but the varia-
tion in the flow rate is very slight.

5.6 Longitudinal impedance

The variation of the longitudinal impedance with
the catheter radius ratio for different values of R; and
Owithd=0o=04=0.5 0ny=025rn=0095and t=
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45° is sketched in Fig. 9. The longitudinal impedance
increases very slightly with the increase of the cathe-
ter radius ratio from 0 to 0.3, and it increases very
rapidly (nonlinearly) when the catheter radius ratio
increase further from 0.3 to 0.7. Also, for a given
value of R;, the impedance increases considerably
with the increase of the yield stress, whereas the be-
havior is reversed when the peripheral layer thickness
increases (R; decreases) while the yield stress 0 is
held constant. Fig. 9 shows the simultaneous effects
of catheterization, non-Newtonian nature of the fluid
and the peripheral layer thickness on longitudinal
impedance of the two-fluid model of blood flow.

The increase in the longitudinal impedance due to
the catheterization is defined as the ratio between the
longitudinal impedance of a fluid model in a catheter-
ized artery for a given set of values of the parameters
and the longitudinal impedance of the same fluid in
the uncatheterized artery for the same set of values of
the parameters. This ratio specifically quantifies the
effects of catheterization in the fluid flow. The esti-
mates of the increase in the longitudinal impedance of
the two-fluid and single-fluid H-B models for differ-
ent values of the catheter radius ratio k£ and yield
stress 0 are computed in Table 1. For the range 0.1-
0.7 of the catheter radius ratio, the ranges of increase
in the estimates of the longitudinal impedance for the
two-fluid H-B model and single-fluid H-B model are
1.34-9.51 and 1.4-33.49, respectively, when the yield
stress is 0.1; 1.35-10.75 and 1.42-42.14, respectively,
when the yield stress is 0.15 and, 1.37-12.46 and
1.44-56.57, respectively, when the yield stress is 0.2.
It is clear that there is a substantial decrease in the
estimates of the increase in the longitudinal imped-
ance for the present two-fluid H-B model compared
with those of the single-fluid H-B model. Also, the
difference between the estimates of the two models is
very significant when the catheter radius ratio k in-
creases from 0.5 to 0.7. As a possible application of
the present study to the medical field, the different
types of catheters in clinical use, their range of size
(Back, 1994) and the corresponding range of increase
in the estimates of the longitudinal impedance for the
two-fluid and single-fluid H-B models with n = 0.95
and n = 1.05 are presented in Table 2, where d; and d,
denote the diameter of the catheterized and uncathe-
terized arteries, respectively. It is of interest to ob-
serve that the range of the increase in the estimates of
the longitudinal impedance for the present two-fluid
H-B model is considerably lower than those of the

Table 1. The estimates of the increase in longitudinal imped-
ance with catheter radius ratio &k for different values of the
yield stress 6 for two-fluid and single-fluid models with
effects on catheterization with 4 = o0 = oy = 0.5, ooy = 0.25, n
=R, =0.95and r =45°.

Two-fluid model Single-fluid model

“ 0=0.16=0.1516=02]6=0.1{6=0.15{6=0.2
0.1 |1.3356| 1.3530 | 1.3719 | 1.4020 | 1.4224 | 1.4452
0.2 |1.7141| 1.7514 | 1.7933 | 1.8367 | 1.9593 | 2.0159
0.3 ]2.2427| 2.3149 | 2.3972 | 2.7147 | 2.8241 | 2.9520
0.4 ]3.0298] 3.1685 | 3.3297 | 4.1304 | 4.3798 | 4.6817
0.5 [4.2573| 4.5291 | 4.8573 | 6.9285 | 7.5569 | 8.3682

0.6 |6.2416| 6.8047 | 7.5181 |13.4638|15.4046(18.1191
0.7 19.5072|10.7497|12.4575|33.4934|42.1378 | 56.5704

Table 2. Range of increase in longitudinal impedance for
different types of catheters for two-fluid and single-fluid
models with 4 = oo = oy = 0.5, o = 0.25, R, = 0.95, t = 45°
and 0=0.1.

Range of | Ty fluid model Single-fluid
Type (t)efrcathe- catheter size] model
d./d, |n=095n=105/n=095n=105
L 114- [ 115- | 117 | 118
Guidewire [0.08 -0.18 130 132 136 139
. 1.24— | 1.25- | 128— | 1.31—
Infusion 0.14-033) &7 | 160 | 1711 | 177
Angioplasty 03-07 1.51— | 1.54— | 1.63— | 1.68—
catheter ) ) 231 2.39 3.05 2.30

single-fluid H-B model.

6. Conclusions

Pulsatile flow of blood through catheterized arteries
is analyzed in this paper, treating blood as a two-fluid
model with the suspension of all the erythrocytes in
the core region as an H-B fluid and the plasma in the
peripheral layer as a Newtonian fluid. The velocity
distribution and flow rate decrease, and, the wall
shear, width of the plug flow region and longitudinal
impedance decrease when the yield stress increases.
Also, the velocity and flow rate increase, and the wall
shear stress and the longitudinal impedance decrease
when the thickness of the peripheral layer increases.
The plug flow velocity and flow rate decrease, and
the longitudinal impedance increases when the cathe-
ter radius ratio increases. Further, it is recorded that
the increase in the estimates of the longitudinal im-
pedance due to catheterization for the present two-
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fluid H-B model is considerably lower than those of
the single-fluid H-B model. Hence, it is believed that
the present two-fluid model could be considered as an
improvement in the studies of blood flow. By using
the present model, physicians can be more accurate in
predicting the post-catheterization flow quantities.
This study could be extended further by introducing
the permeability of the wall of the artery and this
would be done in the near future.
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Appendix 1
We have as given in Eq. (42)

A
Tip = %J.auO*H l’d}’+7D([)

Al.l
or r ( )
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As u,, depends on t through P and A, we shall

write

duyy, _ duy, d£+ Ay ﬁ (A1.2)
ot oP dt J0A dt

Use of Eq. (A1.2) in Eq. (A1.1) gives

A A D
z'lel fJ.auirdr+d—/‘LJ.auﬂrdr +ﬂ (A1.3)
r\ dt? oP dt s oA r

Hence, we have

. dPIauOH dr+ d/1 duy,, v dr
= oP oA

+[ﬂz —,15][3140P6113+ auop ﬁj+ D(r)

2r oP dt JA dt r
if k<r<i (Al.4)
;- A=\ Ou,, dP+8u0[, dA +D(t)
v 2r oOP dt 04 dt r
if 4<r<i, (AL.5)
r = A (auopdi+auopﬁj
- 2r OP dr A dt
R~ 4t R~ 4y D
1 d—PJ Oty r dr+ﬁj—au°f’ rdr +—(t)
dt ; oP dt; 04 r
if 4,<r<g (A1.6)
From Egs. (50)-(52), we get
g, | (A% X At )" |
a;)” =nP L[[ . dx—nﬂ7|: dx
if k<r<i (AL.7)
Py A 2\ A 2 2 n-1 ]
Yoy J I A —x dx — nﬂj A x dx
oP 2 X P x
if 4A<r<i, (A1.8)

outt - R xz_/iz " /12 n-1
a—;)”znP {’l‘( . dx — nﬂj dx

+ %(1 ~R}+227logR,)

if 4,<r<R (AL9)

ougy A=Y ax

Y] =2nAP [I( N J (ﬁz_xz)
a-x) T ax

_(n—l)ﬁj[ . ] (ﬂz_xz)l

if k<r<A (A1.10)
auop AP ’jl ﬂz_xz n dx
ol ox (lz—xz)
A n—=1
AT =X2 dx
—(n-1
(n )IHA( N ] (ﬂz_x )}
if 4A<r<i, (AL.11)

ou, ., S -2Y  ax
aﬁ{[ =2nAP {I[ x ] (xz—/iz)

»

_(n—l)ﬂ.f[xz ;AZJ 7 (xz(/ix/lz)}+2p/1logRI

if 4, <r<R (A1.12)
Substitution of Egs. (A1.7)-(A1.12) in Egs. (A1.4)-

(A1.6) yields the shear stress as

o odr

jj(”;"zjndx vy
A5 o
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2_ .2 Al a2 2!
AP A -rt)dd _[ At —x dx
2 dt |+ x (ﬂz—xz)

(Al.14)

1252w (22 ]

| t*zJ"dx-nﬂ’IV;*zJ”dxﬂ

2 2
D
—(’ —4 [1-R?+24°logR, +4PAlogR |+ L0
4r
if 4, <r<mR (AL.15)
Appendix 2
We have as given in Eq. (46)
5 = Jj Aoy g R (Rot) (A2.1)

r v r

R
By the dependence of u,, ont through P and A,
we have

duyy _ duyy di + Oty ﬁ (A2.2)
ot oP dt 04 dt

Sustitution of Eq. (A2.2) in Eq. (A2.1) yields
Ty = 1 j auOA 14 I"'i'ﬁ LuON rdr
dt © oP dt 3 04
N Rz, (Rl,t)

r

(A2.3)

From Eq. (49), we have

ou, 1
a—g’zg(l—rz +247logr) (A2.4)
oy _ 5 1plogr (A2.5)

Substituting Egs. (A2.4) and (A2.5) in Eq. (A2.3)
and then integrating and using Eq. (A1.15), we obtain

LR (- )

fix 8 dt
+/12[ (r logr—RlzlogRl)—2(r2—RIZ)J}
—g%[Z(i’Zlogr—RlzlogRl)—(r“—Rl“)J
npmdp{? I( ]dxydy_nﬁ
r y=A x=y
R R n-1
I I( J dxydy

TR P

2 2
—[M](l —R*+2A7logR, + 413/110g1e1)+M
4r r

if R<r<l (A2.6)

Appendix 3

Substituting Egs. (A2.6) in Eq. (38) and then inte-
grating the resulting equation between » and 1 with
the help of the boundary condition (39) and simplify-
ing, we get the correction to velocity distribution u,,
in the region R, <7<l as

1dP

R AT

+A? [_2},2 logr —2(1 —r2> +4R’ logR logr —2R’ logr}}
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—D(¢t)logr

Using Egs. (46) and (A1.13) in Eq. (32) and then
integrating the resulting equation from £ to » with the
help of the boundary condition (39) and simplifying,
we get the correction to velocity distribution u,,, in
the region k<r</4 as

iy =P MP{U Xjk[
e
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(A3.2)
where
Filzt) = i{[ﬂ.z ; 22 jn iy —1),6’[22 ;Zz jn 1
(A3.3)

Using the condition u, H‘ Ty the correction to
plug flow velocity u,, in the region 4 <r<4, is
obtained from Eq. (A3.2) as
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Substituting Egs. (46) and (A1.15) in Eq. (36) and
then integrating the resulting equation between  and
R; with the help of the boundary condition (40) and
Eq. (A3.1) and simplifying, we get the correction to
velocity distribution u,, in the region 4, <r<R

as
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The continuity of the velocity distribution gives

urﬁ(ﬂ‘l’t)zulp =u1+1;(ﬂz’t) (A3.6)

The expression for D(¢) is obtained by using Eqs.
(A3.2) and (A3.5) in Eq. (A3.6) and is given below
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K”;fflfffﬁ}
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I
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x
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=Ay y=/y x=y

fio T N

z=4, x=k
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(A3.7)
where
I,-1,—E=nP""
R 4
Ufz(z,t) dz- [ fi(z.1) dz]—logRl
A k
(A3.8)
Appendix 4

The volumetric flow rate as in Eq. (47), we have

0= Sj rudr

—S{TuHrdr+ '[u rdr+ Ju rdr+ j.u,vrdr]

A4 B

=8K]luoﬁrdr+'[uo rdr+ju rdr+J‘u0Nrer

k R
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+a12{]‘ufﬁrdr+]zulprdr+ J.um rer+0(2 J.uwrdr}
%

:8(Q1 +0, +0, +Q4)+80’121(Q5 +0s +Q7)+8aNQ8
(Ad.1)

Substituting Eq. (50) in O, ® of Eq. (A4.1), we
get

Ao 2 _ .2
o =P I J‘(ﬂ o J dxrdr—nf
r=k x=k x

n-1
I I ( ] dxrdr
r=k x=k
Change of order of integrals in Eq. (A4.2) gives
A 2 2 2 2\
_ pn j'l -X A —x
QI—PL[( 5 . dx—npf
A2 _ 2 2 2\t
= -
. 2 X
Using Eq. (51)in O, of Eq. (A4.1), one can get
A 2 2 2 2
[ A\ (A-x
=P
0, { J ( 5 .
) 2 2 2 _2\"!
() -
. 2 X
Substitution of Eq. (52) in O;0f Eq. (A4.1) yields

R R _ n
O,=P" LL X‘L(xz xﬂ2J dx rdr —
R R FE n-1

nf '[ J. [ ] dx rdr}

r=J, x=r

(A4.2)

(A4.3)

j dx—npf
(A4.4)

+§(R,z “2)(1-R+24710gR)  (A45)

Change of order of integrals in (A4.5) gives

oorlfis 2]
w5
A

+§(R12 -43)(1- R +24°logR,)

(A4.6)

Using Eq. (49) in Q,of Eq. (A4.1) gives

o fm sl Ryen] o

Substituting Eqs. (A4.3), (A4.4), (A4.6) and (A4.7)
in the first part of Eq. (A4.1) and then simplifying,

one can obtain
8(Q+0,+0,+0,)
Y P A
\J xzdx+nﬁj[/1 al ] x2dx
p X

:4Pn{_1[ﬂz;xz :
+Kj[x2;’12] xdx - nﬂj(x _ﬂan_lxzdx
5 55
_@E{( x’i j dx — nﬂj[x _’12)” 14}

+P[2(R? - 2)(1- R +247logR,)

A48
+1-R? 44> (1~ R} )logR, | (A48

The condition (54) gives
Al a2 2 R 2 42\
P"{J‘(/qL ! ] dr—J.[r 4 ] dr—
3 r b r
YA R 2 g2\t
nﬂ[][}b ! ] dr—j(r 4 ] dr]}
2 r i r

(A4.9)

= g[l —-R}+2A7log(R, )}
Using Eq. (A4.9) in Eq. (A4.8), we get

8(0+0,+0,+0,)
i _lu 22— 52 " ) B2 — 22 " R
—4P{7|:[ . ]xdx+£( . ]xdx

52 v 552 o

+P[1-R +2(1-R) =24 (1-R})

(A4.10)
+44? (ZRI2 - A )logRlJ
Using Eq. (A3.2) in Qs of Eq. (A4.1), we obtain

dpP
di

IRNIES

Q5 - nZPZrz—Z

] dxydyf(z t)dzrdr
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202 AP

+nP"'D(1 (Ad.11)

Using Eq. (A3.4) in Qs of Eq. (A4.1), we have
0, = (ﬂzz ;/142 \Julp — (/122 ;A‘Z ]nzpznz
A

Gl

_nﬂ'r j f[’iz;xz] dxydy f,(z,1)dz

z=k y=z x=k

{5212 e
_nﬂjk‘j‘k( xz]n_ldxfl(z,t)dzﬂ

2 2
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} dxydyfl'(z,t)dz

2 dt
A Ay 2 2
{I J‘ J.(ﬂ xx \J (lzdx z)ydyﬁ(z,l)dz
z=k y=z x=k

(A2 1[5 ey e
~(n-1) //j T[ﬂz_x } (/lzdfxz)ﬁ(z,t)dzﬂ

z=k x=k

2 2 A
+[/12;/11}nP"“D(t) [ (z1)ee

(A4.12)
Use of Eq. (A3.4) in Q; of Eq. (A4.1) yields
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2 2| ROR A /92 2\ AP dA 4 1
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Using Eq. (A3.1) in Q8 of (A4.1), we get

0 :_%%{1(I_Rf)_i(l—Rf‘)—Rf‘logRl

+D(1 ){Rl log R, + 1(1 RZ)} (A4.14)
A

1-R)+ 115(1 R5)+2‘10gR +IZI(1 R}

Substitution of Egs. (A4.10)-(A4.14) in Eq. (A4.1)

{ Llog R, + 1 R“) (1 - Rlz) - 2( R*logR, )2 yields the final expression for flow rate.

R (1-R)logk + K {1- Rz)}}
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